Kinetic modeling of the interactions between 4-methylumbelliferone, 1-naphthol, and zidovudine glucuronidation by udp-glucuronosyltransferase 2B7 (UGT2B7) provides evidence for multiple substrate binding and effector sites.

نویسندگان

  • Verawan Uchaipichat
  • Aleksandra Galetin
  • J Brian Houston
  • Peter I Mackenzie
  • J Andrew Williams
  • John O Miners
چکیده

Interactions between the UGT2B7-catalyzed glucuronidation of zidovudine (AZT), 4-methylumbelliferone (4MU), and 1-naphthol (1NP) were analyzed using multisite and empirical kinetic models to explore the existence of multiple substrate and effector binding sites within this important drug metabolizing enzyme. 4MU and 1NP glucuronidation by UGT2B7 exhibit sigmoidal kinetics characteristic of homotropic cooperativity (autoactivation), which may be modeled assuming the existence of two equivalent, interacting substrate binding sites. In contrast, UGT2B7-catalyzed AZT glucuronidation follows hyperbolic (Michaelis-Menten) kinetics. Although 4MU and 1NP decreased the binding affinity of AZT, the kinetics of AZT glucuronidation changed from hyperbolic to sigmoidal in the presence of both modifiers. Data were well described by a generic two-substrate binding site model in which there is no interaction between the sites in the absence of 4MU or 1NP, but heterotropic cooperativity results from the binding of modifier. Inhibition of 4MU and 1NP glucuronidation by AZT and interactions between 4MU and 1NP required more complex three-site models, where the modifier acts via a distinct effector site to alter either substrate binding affinity or Vmax without affecting the homotropic cooperativity characteristic of 4MU and 1NP glucuronidation. It is noteworthy that 1NP inhibited 4MU glucuronidation, whereas 4MU activated 1NP glucuronidation. The results are consistent with the existence of two "catalytic" sites for each substrate within the UGT2B7 active site, along with multiple effector sites. The multiplicity of binding and effector sites results in complex kinetic interactions between UGT2B7 substrates, which potentially complicates inhibition screening studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong inhibition of celastrol towards UDP-glucuronosyl transferase (UGT) 1A6 and 2B7 indicating potential risk of UGT-based herb-drug interaction.

Celastrol, a quinone methide triterpene isolated from Tripterygium wilfordii Hook F., has various biochemical and pharmacological activities, and is now being developed as a promising anti-tumor agent. Inhibitory activity of compounds towards UDP-glucuronosyltransferase (UGT) is an important cause of clinical drug-drug interactions and herb-drug interactions. The aim of the present study is to ...

متن کامل

Short Communication ISOFORM SELECTIVITY AND KINETICS OF MORPHINE 3- AND 6-GLUCURONIDATION BY HUMAN UDP-GLUCURONOSYLTRANSFERASES: EVIDENCE FOR ATYPICAL GLUCURONIDATION KINETICS BY UGT2B7

Morphine elimination involves UDP-glucuronosyltransferase (UGT) catalyzed conjugation with glucuronic acid to form morphine 3and 6-glucuronides (M3G and M6G, respectively). It has been proposed that UGT2B7 is the major enzyme involved in these reactions, but there is evidence to suggest that other isoforms also catalyze morphine glucuronidation in man. Thus, we have characterized the selectivit...

متن کامل

Isoform selectivity and kinetics of morphine 3- and 6-glucuronidation by human udp-glucuronosyltransferases: evidence for atypical glucuronidation kinetics by UGT2B7.

Morphine elimination involves UDP-glucuronosyltransferase (UGT) catalyzed conjugation with glucuronic acid to form morphine 3- and 6-glucuronides (M3G and M6G, respectively). It has been proposed that UGT2B7 is the major enzyme involved in these reactions, but there is evidence to suggest that other isoforms also catalyze morphine glucuronidation in man. Thus, we have characterized the selectiv...

متن کامل

Determination of drug glucuronidation and UDP-glucuronosyltransferase selectivity using a 96-well radiometric assay.

A rapid and sensitive radiometric assay for UDP-glucuronosyltransferase (UGT) is described. UGT substrates are incubated in 96-well plates with microsomes in the presence of [14C]UDP-glucuronic acid, and 14C-labeled glucuronidation products are separated from the unreacted nucleotide sugar by solid-phase extraction using 96-well extraction plates. The assay was validated with 15 structurally di...

متن کامل

Evaluation of 3'-azido-3'-deoxythymidine, morphine, and codeine as probe substrates for UDP-glucuronosyltransferase 2B7 (UGT2B7) in human liver microsomes: specificity and influence of the UGT2B7*2 polymorphism.

UDP-glucuronosyltransferase 2B7 (UGT2B7) is involved in the glucuronidation of a wide array of clinically important drugs and endogenous compounds in humans. The aim of this study was to identify an isoform-selective probe substrate that could be used to investigate genetic and environmental influences on glucuronidation mediated by UGT2B7. Three potential probe substrates [3'-azido-3'-deoxythy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 74 4  شماره 

صفحات  -

تاریخ انتشار 2008